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Abstract- A control system is proposed for oxygen therapy of
premature infants. The control software consists of a stepwise as
well as a PID control algorithm to provide fast and efficient
response to changes in arterial oxygen saturation of the infant
detected by pulse oximetry. The control system is tested by using
a simulation model of the infant’s respiratory system. The
simulation results at different levels of hypoxia are evaluated
and the robustness of the controller is assessed.
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INTRODUCTION

Many infants, who are born prematurely, suffer from
respiratory insufficiency and need supplemental oxygen
treatment. This kind of therapy should provide sufficient
oxygen to the infant in the incubator or under the hood, to
prevent the damaging effects of hypoxia. At the same time,
prolonged periods of hyperoxia have to be prevented to avoid
retinopathy of prematurity, edema of the lungs, and other
untoward effects of hyperoxia and oxygen toxicity. Several
control systems have been proposed for oxygen treatment of
newborn infants [1-4]. The system proposed in this paper
uses a modified version of the technique presented in [4].
Compared to the systems developed previously, this new
modified technique is designed to respond more quickly to
very abrupt reductions in arterial oxygen saturation. This
oxygen control system has the capability to respond safely
and quickly to rapid disturbances in oxygen balance, as well
as the ability to regulate arterial oxygen saturation of the
infant under more stable and finely controlled clinical
conditions.

METHODOLOGY

The block diagram of the system is shown in Figure 1. The
arterial oxygen saturation of the infant, Samo2, is detected by
using pulse oximetry. This data is converted to digital and
supplied to a microprocessor. The algorithm in this processor,
which will be described later, is designed to control the input
signal to a mixer regulator based on the arterial oxygen
saturation level of the infant. This signal is converted to
analog before being applied to the mixer regulator. The
output of the mixer regulator controls the opening and closing
of an electronic valve which allows the entry of oxygen into
the oxygen air mixer. The output of this mixer is the
oxygenated air which is supplied to the infant in the
incubator, or under the hood treatment.

 Figure 2 shows the flow chart of the steps performed by the
control algorithm which is stored in the microprocessor. This
algorithm uses a modified technique which incorporates two
types of closed-loop controls to detect and correct hypoxia and
hyperoxia in premature infants. As shown in Figure 2, at the
beginning, the alarm signals are deactivated. Then the set-point
for arterial partial pressure of oxygen is defined and the initial
value of the inspired fraction of oxygen, FIO2, is transmitted to
the output port. In the next step, the threshold values for arterial
oxygen saturation and arterial oxygen pressure are defined. In
the step that follows, the main loop is started at A, and the data
representing arterial oxygen saturation is read from the input
port. This data is provided by using pulse oximetry. Next, the
arterial oxygen pressure is calculated from the value of arterial
oxygen saturation by using the following equation [5]:

PamO2 = -ln [1- (SamO2)0.5]/0.046                                              (1)

In this equation, PamO2, is the partial pressure of oxygen in the
mixed arterial blood, and SamO2 is the arterial oxygen saturation
of the infant. In the step that follows, the arterial oxygen
pressure is compared with a minimum threshold value to detect
the possibility of an artifact. This possibility is detected if the
calculated arterial oxygen pressure is less than the threshold
value. In this case, an alarm signal is transmitted to an
appropriate output port and control is returned to the beginning
of the main loop at A. However, if the arterial partial pressure
of oxygen is found to be higher than the minimum threshold
value, in the step that follows, the arterial oxygen saturation is
compared to a minimum safe level. If the measured value is less
than or equal to the minimum safe value, the oxygen
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concentration, FIO2, is increased stepwise and the additional
oxygen is supplied to the O2 air mixer. After 0.75 seconds, the
routine is turned back to A and the arterial oxygen saturation is
read from the input port. This loop continues until the arterial
oxygen saturation is above the minimum safe level. At this
point, a proportional, integral, derivative (PID) control loop is
started at B. In this loop FIO2 is controlled according to a PID
routine, and every 0.75 seconds the output is adjusted and the
routine is turned back to A. If at any time during this operation,
the arterial oxygen saturation falls below the minimum safe
level, the stepwise control loop supersedes the PID loop to
avoid any hazards of hypoxia.

The following is the system of equations describing the PID
control loop:

Y(n) = a.E1(n) +b.E2(n) +c.E3(n) +D                                (2)

Where

E1(n) =PamO2 (set-point) – PamO2                                          (3)

E2(n) =E2(n – 1) +K.E1(n)                                               (4)

E3(n) = (E1(n) – E1(n – 1))/K                                          (5)

In these difference equations which are similar to the
equations described in (4), PamO2 is the desired set-point value for
the partial pressure of oxygen in the mixed arterial blood of the
infant and E1(n) is the error signal. Also, K =0.75 seconds, a =
6.45X 10-5, b = 3.22X 10-5, c = 7.29X 10-6, and D = 0.21. Y(n)
is the output of the PID control loop which is provided to the
mixer regulator via a digital to analog converter.

In order to evaluate the response of the controller, the closed-
loop system shown in the block diagram of Figure 1 was
simulated on a digital computer. A detailed model of the infant
respiratory system [6] was used in the simulation experiments.
In this model, the effects of shunt in the lungs, a varying dead
space, and prematurity of arterial receptors in infants are
included. Lungs, brain, cerebrospinal fluid, and the body tissues
are separate compartments. The respiratory controller in this
model functions as a discrete system driven by Hering-Breuer
type reflex signals, and the plant is a continuous system. The
details of this model and its equations that constitute a 12th

order system of non-linear equations are found in [6] and are
not repeated here for brevity.

The O2 air mixer and the effect of mixing in the incubator
were represented by the following equation in the simulation
experiments:

T. dFIO2(t)/dt  + FIO2(t) = Y(t)                                              (6)

In this equation, T is the combined time constant of the O2 air
mixer and the incubator which was set at a typical value of 30
seconds.
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RESULTS AND DISCUSSION

The performance of the controller was examined at different
levels of hypoxia by using simulation experiments. Of
particular interest in these tests, were the duration of hypoxia
and the effectiveness of the controller in correcting the hypoxic
conditions. Two examples of the transient responses of the
system to hypoxia are shown in Figures 3 and 4.

In Figure 3, hypoxia is induced by 18% oxygen breathing
during the first 100 seconds of simulation time. The lung shunt
ratio of the infant is 10%, the alveolar-arterial oxygen
difference is 20 mm Hg and the maturity factor of the arterial
receptors of the infant is 80% of the normal value. The transient
responses of partial pressures of oxygen and carbon dioxide in
the mixed arterial blood of the infant (P amO2 and PamCO2) as well as
the F IO2 response are shown in this figure. As is seen, PamO2 falls
to about 68 mm Hg at the end of the first 100 seconds. At this

point the oxygen controller is turned on. As a result, FIO2 rises to
about 0.255 during the first 20 seconds of control and PamO2 rises
to above 100 mm Hg. Then a few oscillations in FIO2 and PamO2

are observed and FIO2 returns to slightly higher than 0.21 and
PamO2 reaches to about 87 mm Hg in approximately 5.5 minutes.
As expected, there are no disturbances in the PamCO2 response in
this experiment.

Figure 4 shows another set of the simulation responses of the
control system to hypoxia induced by 14% oxygen breathing for
100 seconds.  In this test, alveolar-arterial oxygen difference is
25 mm Hg, lung shunt ratio is 20%, and the maturity factor of
arterial receptors is 80% of the normal value.

As can be seen in this figure, during the first 100 seconds that
the oxygen controller is off, PamO2 falls below 50 mm Hg. Since
arterial oxygen saturation goes below the minimum safe level,
FIO2 rises stepwise to 0.45 at the time that the feedback oxygen
controller is turned on. Consequently, it is seen that PamO2

increases to about 70 mm Hg during the first several minutes of
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control. FIO2 remains at 0.45 for less than 20 seconds, and then it
decreases stepwise to 0.3 as a result of the increase in SamO2.
Thereafter, FIO2 remains at 0.3 level for about 30 seconds and
then after a slight overshoot to about 0.34, it gradually
decreases and reaches about 0.25 in approximately 17 minutes.
PamO2 reaches safe levels in less than 10 seconds after the oxygen
controller is turned on in this experiment and gets to about 90
mm Hg in less than 5.5 minutes. The PamCO2 values are not
affected by hypoxia as expected.

It is seen in the simulation experiments that the oxygen
controller is quite robust and effective in response to hypoxia.
The hypoxic conditions are corrected within 5-7 seconds while
prolongation of high levels of oxygen breathing are prevented.

CONCLUSION

A new oxygen control system has been proposed to detect
and correct hypoxia and hyperoxia by using the non-invasive
measurement technique of pulse oximetry. Two different
closed-loop mechanisms are incorporated in this system. One of
them is provided to respond instantly to rapid changes in
oxygen balance, and the other one provides fine control of the
inspired oxygen concentration of the infant. This controller has
been successfully tested by using computer simulation. Clinical

experiments are needed to further assess the effectiveness of the
proposed control system.
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